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ABSTRACT

The link between ore texture and mineral
liberation has previously been established at a
microscopic scale. To construct ore texture
models that can be used in mining applications
requires this relationship to be retained at a
significantly larger scale. This is initially dealt
with by finding a basic set of microtextures that
form the elements of the ore textures at the
next larger mesoscopic scale, simulating these
mesotextures at a fine scale, then changing the
support of the mesotexture simulations to gen-
erate the expected mining block/stope meso-
texture distributions. Thus, a mutually exclusive
and exhaustive set of spatially locatable meso-
textures can be used to fully characterize the
metallurgical properties of in situ material.

A method that generates expected distri-
butions of mesotextures for any mining block
size or shape is proposed, and includes: (1)
characterizing the spatial correlation of the set
of mesotextures with a single covariance func-
tion; (2) generating multiple simulations of
mesotextures at a fine scale; and (3) using the
simulations at a fine scale to generate the
expected mining block/stope mesotexture distri-
butions. A case study, using the George Fisher
sediment-hosted base metal deposit in Queens-

land, Australia, is developed to demonstrate the
proposed methodology as well as show the
inadequacy of off-the-shelf approaches.

Mining-scale texture models can be used
to improve the in situ discrimination of ore
from waste by exploiting the joint spatial vari-
ability of grades and textures to quantify the
expected metal recovery of in situ material,
then calculate local marginal cut-off grades. An
artificial case study is presented to demon-
strate the changes in ore/waste selection when
considering ore texture models compared to
constant metal recoveries.

Introduction

The design and operation of ore process-
ing plants can be enhanced by taking into
account complex ore processing parameters,
such as mineralogy, grindability, liberation,
washability, pulp fluidity, density, and floatabil-
ity. These parameters collectively characterize
the metallurgical behaviour of the ore. How-
ever, even with the most sophisticated plant
control system and mining practices, a
response lag occurs between the measurement
of an ore processing parameter and the correc-
tive action required to be implemented. For
example, Robertson and Sehic (1993) describe
an ore control system at the Ok Tedi mine,
Papua New Guinea, in which the downstream
mill performance is radioed hourly to the pit
geologist to enable more selective in-pit mining
based on geological observations. It is during
this lag time that an opportunity exists to max-
imize the profit of the resource by introducing
a predictive ore control strategy.

Numerous authors have discussed the link
between ore texture and metallurgical behav-
iour (Gaspar and Pinto, 1991; Blaschke and
Siwiec, 1993; Ferrara et al., 1993; Kahn, 1993;
King and Schneider, 1993; Bojevski et al.,
1998). If the metallurgical properties of ore and
the ore’s texture are intimately linked, then the
time-dependent variability of ore behaviour in
the mill feed is directly related to the space-
dependent variability of textures in the ore-
body, which is an intrinsic feature of the
orebody. If these ore textures can be recog-
nized, measured, and quantified in spatial
models, then these ore texture models can form
the basis for predicting, simulating, and con-
trolling the time-dependent variability of the
ore behaviour in the mill feed. Furthermore, if
different metal recoveries are associated with
the various ore textures, then spatial ore tex-
ture models, when combined with models of
grades, can be used to enhance ore/waste
delineation by defining local cut-off grades.

This paper presents a method to construct
mining-scale models of ore texture distribu-
tions that involves: (1) defining ore textures at
a practical scale; (2) characterizing the spatial
ore texture continuity; (3) simulating the ore
textures at a fine scale; and (4) using the fine
scale ore texture models to characterize the
texture distribution at the mining scale. The
application of the method is shown for the
George Fisher mine, Queensland, Australia. In
addition, the influence of these texture models
on ore/waste discrimination is discussed.

Modelling Ore Textures

The term ‘ore texture’ carries a variety of
connotations for those in the mineral industry.
A comprehensive review of the variations in the
definition of ore texture is contained in Vink
(1997). In this paper, ore texture refers to the
mineral assemblage present, their volume frac-
tions, the grain size, shape, and spatial distri-
bution of each mineral phase, and the
intergranular relationships.

A number of issues need to be addressed
in the modelling of ore textures for mining
applications, including: (1) the scale of the ore
texture data; (2) how to classify or represent
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ore texture information; and (3) a methodology
for modelling ore textures at a mining scale.

The earlier definition of ore texture does
not place any constraint on the scale at which
ore textures can be defined. Three scales are
commonly referred to in the mining commu-
nity: microscopic (grain-scale), mesoscopic
(hand specimen), and macroscopic (mappable
unit). The existence of ore textures at different
scales can be dealt with by finding a basic set
of ore textures at the microscopic scale that
form the elements of the ore textures at the
next larger mesoscopic scale. A group of ore
textures defined at this mesoscopic scale con-
stitutes an ore type which may be a mappable
unit. In this paper, the terms ‘microtexture’ and
‘mesotexture’ are defined to represent ore tex-
tures at the microscopic and mesoscopic
scales, respectively. Ore texture is now used as
a generic term that refers to ore textures on all
scales inclusively.

Comprehensive classifications for ore tex-
tures have previously been established. For
example, Ramdohr (1980) proposed guidelines
for texture description and classification. Three
approaches to texture classification are used in
the literature: (1) a purely descriptive classifica-
tion; (2) a genetic classification based on
assumptions on the formation of deposits; and
(3) a technical classification, generally based on
physical or chemical criteria (Vink, 1997). None
of these approaches adequately describe all
properties of the rock, based on a strict inter-
pretation of the definition of ore texture. Vink
(1997) proposed a microtexture and mesotex-
ture classification scheme, specific to the
George Fisher mine that completely character-
izes the occurrence of all minerals in the rock.
The mesotexture classification provides a
framework for representing rock material at a
scale that can be used in traditional methods of
modelling categorical variables.

Modelling of ore mesotextures at a scale
practical for mining applications is based on
three factors: (1) characterization of the spatial
mesotexture continuity; (2) conditional simula-
tion of mesotextures at a fine scale; and (3) use
of fine-scale mesotexture models to generate
mesotexture distributions at the scale of mining.

Spatial Structures

Consider K mutually exclusive and
exhaustive mesotextures, k = 1,...,K. An indica-
tor transform for a particular mesotexture sk at
a sample location x in a mineral deposit is
given by:

1 if location x belongs to 
i(x; sk) = � mesotexture sk �

0 otherwise  . . . . . .(1)

Thus, the sampled mesotexture data can be
coded into K indicator datasets {i(x;sk),
k=1,…,K}. To quantify the spatial variability of
the K mesotextures, a multi-texture covariance
function is used. The multi-texture or phase
covariance CM(H) proposed by Soares (1992)
measures the chances that two points sepa-
rated by vector h belong to the same mesotex-
ture and is given by:

1 K N
CM(h) = ——— � � i(xj;sk) · i(xj + h;sk) KN(h) k=1 j=1

– p-h(sk) · p+h(sk)  . . . . . . . . . . . . . . . . . .(2)

where N(h) is the number of pairs for separa-
tion vector h, p-h(sk) is the proportion of tail
samples that are mesotexture sk, and p+h(sk) is
the proportion of head samples that are meso-
texture sk.

The multi-texture correlogram ρM(h) is a
standardized form of the multi-texture covari-
ance, calculated as:

CM(h)
ρM(h) = ————— . . . . . . . . . . . . . . . (3)

K

� σ2
|h| 

(sk)
k=1

where σ2
|h| 

(sk) = p
|h| 

(sk) – p2
|h| 

(sk), the variance of
the indicators for mesotexture sk.

The multi-texture correlogram in equation
3 is a correlogram that incorporates all K meso-
textures in a single measure of spatial varia-
tion. Although equation 3 is an average type
indicator correlogram of the K mesotextures,
the multi-texture correlogram is not derived
from averaging the K indicator correlograms at
each separation vector h.

Conditional Simulation of Mesotextures

Modelling of categorical variables, such as
mesotextures, by stochastic simulation meth-
ods has been demonstrated in various studies
(Soares, 1992; Yarus and Chambers, 1994;
Goovaerts, 1996). For the simulation of ore
mesotextures, a new sequential “growth”
algorithm extending the off-the-shelf sequen-
tial indicator simulation (SIS) (Alabert, 1987;
Goovaerts, 1997) is used herein. The method
mimics a natural process of “informed” growth
in a spatial pattern and generates geologically
plausible patterns (Richmond, 1998; Richmond
and Dimitrakopoulos, 2000). The SIS algorithm
with sequential growth or controlled paths is:
• use a controlled simulation path, select a

location x at which no mesotexture exists;
• estimate the local conditional cumulative

distribution function (ccdf) of the K meso-
textures at x using point kriging of the K

indicator datasets, a correction to local
probabilities, and the multi-texture correlo-
gram;

• draw a random number n uniformly distrib-
uted in [0,1], then the interval of the local
ccdf in which n falls is the mesotexture sim-
ulated at location x;

• add the simulated mesotexture to the K
conditioning indicator datasets;

• repeat steps 1 to 4 following controlled
paths selected until all locations have been
allocated a mesotexture; and

• generate additional equally probable mod-
els of mesotextures by following the entire
sequential procedure with a different con-
trolled path.

Successive growth or controlled simula-
tion paths involve defining a set of conditions
that, if met when location x is visited randomly,
allows a mesotexture to be simulated at x. If
the conditions are not met, then the location is
not considered until the conditions are
changed. By relaxing the conditions for subse-
quent random visits, mesotextures are simu-
lated at all locations. The condition used is
distance from the existing data. This distance is
relaxed in a sequence of ‘passes’ or steps
needed to complete the process.

At a given iteration step t, a deviation
exists between the target proportion of meso-
texture sk within the study area A, p(sk;A), and
the corresponding simulated proportion of
mesotexture sk at t, pt(sk;A). The mesotexture
probabilities estimated by point kriging p*(sk;x)
are corrected (for details see Richmond and
Dimitrakopoulos, 2000) by this deviation prior
to building the local ccdf of the K mesotextures
(Soares, 1998), i.e.:

p*t(sk;x) = p*(sk;x) + [p(sk;A) – pt(sk;A)] . . . . (4)

Each simulation of mesotextures gener-
ated by modified SIS above honours the sam-
pled mesotexture data, the global mesotexture
statistics, and the multi-texture correlogram.
Differences between models reflect the uncer-
tainty of the mesotextures simulated. Local
uncertainty measures may be provided by the
entropy of the local ccdf built from multiple
simulated mesotexture models (Goovaerts,
1997), calculated as:

K
H(x) ¤ – � �ln p*(x;sk)� · p*(x;sk) ≥ 0 . . . . . . . (5)

k=1

where p*(x;sk) is the proportion of mesotex-
tures simulated at x that are sk. At any datum
location the probability is one for the prevailing
mesotexture, hence, H(x) is 0. For all other loca-
tions the measure H(x) falls in the interval
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[0, lnK]. The upper bound lnK is associated to
the uniform distribution, where p*(x;sk) = 1⁄K,
∀ k. Therefore, a standardized measure of local
entropy is:

H(x)
HR(x) = —— ∈ [0,1] . . . . . . . . . . . . (6)

lnK

Mesotexture Models at the Mining Scale

Classifying a mining-scale block with a
single mesotexture is highly practical for min-
ing purposes. Previous studies have investi-
gated allocating a location (Soares, 1992;
Goovaerts, 1996) or mining-scale block (Rich-
mond and Dimitrakopoulos, 1997; Richmond,
1998) to the category with the largest local
proportion under various constraints. In all of
these studies, significant local bias was intro-
duced, and poor reproduction of either the tar-
get global proportions or the transitional
statistics resulted.

The straightforward combination of the
simulated mesotextures from multiple realiza-
tions to produce the expected mining
block/stope mesotexture distributions is shown
in Figure 1. This approach to generating mod-
els of mesotexture distributions of mining
blocks from mesotexture simulations at the
data scale is unbiased, and the size and shape
of the blocks do not have to be regular, as
shown in Figure 1.

Simulating Mesotextures at the George
Fisher Deposit

To illustrate the proposed methodology,
an example of modelling mesotextures for a
fan of drill holes at the George Fisher massive
sulphide deposit located in the historic min-
ing region of Mount Isa in Queensland, Aus-
tralia, is presented in this section. The George
Fisher mine is one of the largest undeveloped
lead-zinc deposits in the world with ore pro-
duction in the order of 3 mt/yr. George Fisher
is owned and operated by Xstrata (previously
Mount Isa Mines).

Geology and Mineralization

The George Fisher mine is situated
approximately 20 km north of Mount Isa within
deformed sediments of the Urquhart Shale,
which is part of the Mount Isa Group. A simpli-
fied geological interpretation of the George
Fisher mine is shown in Figure 2. The sedimen-
tary units in this diagram dip steeply to the
west at 60° to 70°, unless deformed by tec-
tonic activity. The Urquhart Shale hosts all
known economic silver-lead-zinc mineralization
and is mostly concordant to the sedimentary
bedding. The drill holes used in this study were
collared in footwall pyritic shales of the
Urquhart Shale and directed stratigraphically
upwards, shown in Figure 2.

Ore Texture Data

At the George Fisher deposit, the link
between ore texture and metallurgical proper-
ties for a set of 10 mutually exclusive and
exhaustive mesotextures is well established
and economically significant (Vink, 1997;
Bojevski et al., 1998). This metallurgical rela-
tionship relies on a basic set of microtextures
that form the elements of the textures at the
next larger mesoscopic scale, which are logged
in diamond core as discrete mesotextures.

The mesotextures used in this study and
their characteristics are shown in Table 1. In
this table, banded mesotextures consist of
alternating bands of sulphide-rich and sul-
phide-poor shale, in which the sulphide miner-
alization is fine grained (<30 microns). Massive
mesotextures are coarser grained aggregates
of sulphide mineralization that may contain
isolated fragments of carbonaceous shale with
remnant banded mesotextures. Some of the
meso/microtexture relationships are shown in
Figure 3, which includes photographs of two
mesotextures at the core scale and photomi-
crographs of their corresponding microtexture
compositions. In this figure, the relative differ-
ence in grain size between banded mesotex-
tures and massive mesotextures is visible by
comparing, for instance, Figures 3b and 3d.

As detailed in Richmond (1998), mesotex-
tural logging and data processing included: (1)
recording the proportions of each small-scale
mesotexture within larger-scale drill hole inter-
vals; (2) compositing to small intervals; and (3)
declustering to establish representative global
mesotexture proportions.

The downhole logs of mesotexture propor-
tions are shown in Figure 4; the sample size is
0.1 m. In this diagram, all 10 mesotexture pro-
portions vary significantly throughout the study
area. For example, Mesotexture 7 was com-
monly intersected in the deeper parts of the drill
holes, but rarely near the drill hole collars.
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Fig. 1. Schematic representation of how the proposed
upscaling approach can incorporate blocks of any size
and/or shape.

Fig. 2. East-west section through the George Fisher mine,
Queensland, Australia, at approximately 7020 N showing
a simplified geological interpretation.

Table 1. Mesotexture categories used in this study and their characteristics

Number Mesotexture Name Prop. (%) Description

1 Banded pyrite 16.78 Banded mesotexture with 100% of the sulphide minerals pyrite ± pyrrhotite
2 Banded pyrite-sphalerite 3.38 Banded mesotexture with sphalerite >0% and <50% of the sulphide minerals
3 Banded sphalerite 1.82 Banded mesotexture with sphalerite ≥50% of the sulphide minerals
4 Massive galena 1.06 Massive mesotexture with galena >60% of the sulphide minerals
5 Massive sphalerite-galena 0.92 Massive mesotexture with approximately equal proportions of sphalerite and galena
6 Massive sphalerite 1.49 Massive mesotexture with sphalerite >60% of the sulphide minerals
7 Massive pyrite 3.42 Massive mesotexture with 100% of the sulphide minerals pyrite ± pyrrhotite
8 Massive pyrrhotite 0.14 Massive mesotexture with 100% of the sulphide minerals pyrrhotite ± pyrite
9 Banded pyrrhotite 0.08 Banded mesotexture with 100% of sulphides pyrrhotite ± pyrite
10 Gangue 70.92 100% carbonaceous or calcareous shale/siltstone



Spatial Structures of Mesotextures

To implement the method proposed in the
previous section, directional experimental
multi-texture correlograms are first calculated
then a suitable model fitted. The experimental
and modelled multi-texture correlograms are
shown in Figure 5. This diagram includes indi-
cator correlograms of mesotextures, which are
erratic due to highly variable global proportions
and the sparse data configuration. Note that
the multi-texture correlogram is not the aver-
age of the 10 indicator correlograms of meso-
textures. The model fitted is spherical (sph) as
shown below:

��������h30°-90° h60°-270°ρ(h) = 1.0 – �0.25 + 0.45sph�	—–—

2

+ 	—––—

2

1.0 3.0

��������h30°-90° h60°-270°+ 0.30sph�	—–—

2

+ 	—––—

2

� . . . . . . (7)
5.0 35.0

Conditional Simulation of Mesotextures

Initial mesotexture simulations gener-
ated with the traditional, off-the-shelf SIS
algorithm as implemented in Deutsch and
Journel (1998) did not produce geologically
realistic patterns representing the observed
ore texture patterns at the mine site and were

discarded by the mine’s geologists. In addi-
tion, the simulated mesotextures failed to
reproduce the target mesotexture proportions
and mesotexture spatial structures. Figure 6
shows one simulated model of textures using
the traditional SIS method. The sequential
simulation framework has no constraints on
the order in which locations are simulated,
however, it was observed that control over the
path used to sequentially simulate grid nodes
could be used to generate geologically repre-
sentative mesotexture realizations.

The growth-based SIS algorithm pre-
sented earlier was used to generate 20 realiza-
tions on a fine grid, based on the available data
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Fig. 3. Texture photographs and photomicrographs: (a) banded pyrite at drill core scale;
(b) banded pyrite at microscopic scale (fine-grained pyrite is white and gangue is black);
(c) massive sphalerite-galena at drill core scale showing remnant banded pyrite (folded);
(d) massive sphalerite-galena at microscopic scale (galena is white, sphalerite is grey, and
gangue is black). Note that all scales are approximate.

a)

c)

b)

d)

Fig. 4. Down hole logs of mesotexture proportions (0.1 m samples): (a) mesotexture 1
(declustered global proportion = 16.78%); (b) mesotexture 3 (1.82%); (c) mesotexture 7
(3.42%); and (d) mesotexture 10 (70.92%).

a)

c)

b)

d)

Fig. 5. Experimental multi-texture and indicator correlograms: (a) 30° to 90°, and (b) 60° to 270°. Multi = multi-texture correlogram; Mes 1 = indicator correlogram for mesotexture 1.

a) b)



and the covariance function in equation 7. Four
of these realizations are shown in Figure 7. In
this diagram, all four realizations display similar
characteristics close to the drill fan where there
is conditioning data. For example, an area dom-
inated by Mesotexture 10 appears in the top
left corner of all the realizations. In the top
right and bottom right parts of the realizations,
which is remote from the drill fan conditioning
data, they vary in appearance, which reflects
the uncertainty of the mesotextures simulated
at these locations. Near the origin of the drill
fan, in the centre right part of the simulations,
there are narrow zones consisting mostly of
mesotextures 1, 2, and 3 dipping steeply to the
west at ±60° separated by areas consisting
entirely of Mesotexture 10. This reflects a series
of discrete mineralized lenses dominated by
banded mesotextures that are separated by
unmineralized gangue (Mesotexture 10).

Validation of the mesotexture simulations
involved checking with mine geologists that the
realizations of simulated mesotextures were
realistic, and then checking the reproduction of
the experimental global mesotexture propor-
tions and several measures of spatial continuity.
Figure 8 shows the multi-texture model used for
simulating mesotextures and the corresponding
correlograms calculated from the 20 realiza-

tions. In this figure, there is close match
between all multi-texture correlograms calcu-
lated from the simulations and the model. The
univariate and bivariate measures of spatial
continuity must also be checked to ensure rea-
sonable reproduction of the experimental indi-
cator and cross-indicator correlograms.

Local Uncertainty of Simulated Mesotextures

Local uncertainty measures were calcu-
lated for the mesotexture simulations using
equation 6 and are displayed in Figure 9. In this
figure, the location of the drill fan conditioning
data is clearly visible. Near the origin of the drill
fan there are several narrow zones of low
entropy dipping steeply to the west at approxi-
mately 60°, separated by areas of higher

entropy. These zones of low and high entropy
reflect logged zones containing a single meso-
texture category (unmineralized gangue) and
multiple mesotexture categories (associated
with mineralized lenses), respectively. In Figure
9, high values of entropy are observed even at
data proximity. These high values may reflect
the possibility that a few different mesotex-
tures are equally probable. Note that with two
to five equally probable mesotextures, the
standardized entropies are 0.31, 0.48, and
0.70, respectively. The uncertainty described
here is not the same type of uncertainty as the
uncertainty far from data locations, where one
has no understanding about possible ore tex-
tures. Areas distant to the conditioning data,
for example, in the lower right and top right
areas of Figure 9, have relatively high local
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Fig. 6. A realization of mesotextures generated with the
traditional “off-the-shelf” sequential indicator simulation
algorithm (see Fig. 4 for drill hole locations).

Fig. 7. Realizations of mesotextures generated with the modified sequential indicator simulation with growth or control
path (see Fig. 4 for drill hole locations).

a)

c)

b)

d)

Fig. 8. Multi-texture correlograms for 20 mesotexture simulations: (a) 45° to 90°, and (b) 60° to 270°. 

a) b)

2890.00

2590.00
2050.00 East 2395.00

R
L

2890.00

2590.00
2050.00 East 2395.00

R
L

2890.00

2590.00
2050.00 East 2395.00

R
L

2890.00

2590.00
2050.00 East 2395.00

R
L

2890.00

2590.00
2050.00 East 2395.00

R
L



uncertainty values, which may suggest that
more than 20 realizations should be used for
entropy calculations. Nevertheless, standard-
ized entropy calculations in Figure 9 show
cases where high entropy, implying high uncer-
tainty, appears close to data rather than far
from the data. This is possible and it attempts
to account for local variability in addition to
data proximity. However, entropy measures in
this example also demonstrate a level of ambi-
guity that needs to be further understood.

From Mesotexture Simulations to Texture
Distributions for Mining Blocks

The next step is to determine the expected
mesotexture distributions for given block sizes.
Figure 10 shows the mesotexture proportions
for 10 m by 10 m blocks. Blocks near the drill
fan display close relatationships between block
proportions and drill hole intersections of the
corresponding mesotexture, shown in Figure 4.
Blocks that are distant to the conditioning data
fluctuate more closely about the experimental
global mesotexture proportions. For example, in

the top righthand corner of Figure 10, the block
proportions for Mesotexture 1 vary from 12% to
22%, while near the drill fan, the block propor-
tions range from 5% to 80%. The experimental
global proportion of Mesotexture 1 is 16.78%.

Influence of Ore Textures on Ore/Waste
Delineation

Traditional methods of outlining ore
involve the application of a single cut-off
grade, based on a fixed recovery factor, to the
in situ expected grade. The mining-scale ore
texture distributions can aid the in situ discrim-
ination of ore from waste. This could involve
exploiting the joint spatial variability of grades
and textures to quantify the expected metal
recovery of in situ material, then calculate local
marginal cut-off grades.

The Expected Metal Recovery of In Situ
Material

If the ore’s texture and its metal recovery
are intimately linked, then the expected distri-
butions of ore textures can be used to calculate
the expected metal recovery as:

G L

� � rk(x
l
α) · z(xl

α)
α=1 l=1

rb = —————————. . . . . . . . (8)
G L

� � z(xl
α)

α=1 l=1

where rb is the fractional metal recovery for
mining block b, G is the number of grid nodes
located within b, L is the number of realiza-

tions, rk(x
l
α) is the fractional metal recovery for

mesotexture sk, simulated at xα on the lth real-
ization, and z(xl

α) is the metal grade simulated
at xα on the lth realization.

The simulated metal grades must honour
the transitional statistics between ore textures
and metal grades separated by a vector h = 0.
For example, if a massive galena ore texture
was simulated at xα, then a co-existing lead
grade of 0% at xα is unrealistic, and a low lead
grade is unlikely. Alternatively, if gangue is
simulated at a location all economic metal val-
ues must be 0%. In theory, the transitional sta-
tistics between ore textures and metal grades
should be honoured for all h that belong to the
deposit area.

It is important to note that the expected
metal recovery for a block of ore, calculated
with equation 8, is sensitive to: (1) the number
of ore texture-grade co-simulations L; (2) the
mining selectivity; and (3) the ore processing
method employed. The impact of mining selec-
tivity on the expected metal recovery depends
on the short-scale variability and connectivity
of the ore textures and grades.

Local Marginal Cut-off Grades

The marginal cut-off grade of a deposit
may be calculated as:

co – cwzb
c = ———— . . . . . . . . . . . . . (9)

p · rb

where zb
c is the marginal cut-off grade for min-

ing block b, co is the mining and processing
cost per ton of ore, cw is the mining cost per ton
of waste, and p is the metal price per concen-
tration unit, and rb is the fractional metal recov-
ery associated with processing.

In the previous section, the distribution of
ore textures was heterogeneous, thus rb, and
consequently zb

c, may vary in space. These local
marginal cut-off grades can be used to improve
the in situ discrimination of ore from waste.

An Artificial Example

Consider the artificial example, shown in
Figure 11, of three mesotextures that display
different metallurgical characteristics, for which
the expected block mesotexture proportions
are known. This example could represent meso-
texture data from a sedimentary-hosted base
metal deposit such as the George Fisher
deposit, with A being coarse-grained sphalerite
and galena mineralization, B being fine-grained
pyrite and sphalerite mineralization, and C
being fine-grained sphalerite mineralization.
Metal recovery from material composed
entirely of Mesotexture A is 81%, mesotexture
B, 55%, and Mesotexture C, 77%. The global

A. RICHMOND and R. DIMITRAKOPOULOS CIM Bulletin May 2005

6 CIM Bulletin ■ Vol. 98, N° 1087

Fig. 9. Standardized entropy of the local conditional cdf
of mesotexture probabilities.

a)

c)

b)

d)

Fig. 10. Mesotexture proportions for 10 m by 10 m blocks.



proportions of Mesotextures A, B, and C are
40%, 16.4%, and 43.6%, respectively.

Based on the global mesotexture propor-
tions and the metal recoveries associated with
each mesotexture, the average metal recovery
is 75%. The net value of a block of material is
the extractable metal value minus the mining
and milling costs. If the net value is positive the
block is ore, otherwise it is waste. Figure 12
shows the block net values and the block
ore/waste classification based on the economic
parameters included in the diagram. In this dia-
gram, the bottom westernmost block has a net
value of -$933 and is classified as waste. The
ore/waste classification is based on all blocks
being metallurgically identical and, conse-
quently, the ore/waste discrimination is simply
related to the interpolated grade.

If we assume that the metal grades are
constant within a block, then the metal recov-
eries calculated from equation 8 are related
solely to the proportions of the three mesotex-
ture types within a block, shown in Figure 11.
If the metallurgical recoveries based on the ore
texture distributions are combined with the
interpolated grades, the re-evaluation of the
blocks in the example changes the ore/waste
boundary. This is shown in Figure 13 where the
net value of the same blocks in Figure 12 may
change significantly when texture information
is considered. Some of the blocks that were
previously considered to be ore are now classi-
fied as waste and vice versa. In Figure 13, note
that the net value of the bottom westernmost
block is now $1,119 and classified as ore. Sim-
ilarly, a block in the lower right part of the fig-
ure has changed from ore to waste with a
negative net value when considering both
grade and texture information.

Comments and Conclusions

In the case study at George Fisher, the
existence of ore textures at different scales is
dealt with by finding a basic set of ore textures
at the microscopic scale that form the elements
of the ore textures at the next larger meso-
scopic scale, which can be logged in diamond

core as discrete mesotextures. The approach to
ore texture modelling described in this paper
generates expected distributions of mesotex-
tures for any block size or shape from fine-scale
mesotexture simulations.

The modified SIS algorithm with sequen-
tial growth or controlled paths generated
mesotexture realizations that are visually real-
istic, and honour the global univariate and
bivariate data statistics. Other techniques such
as pluriGaussian truncated simulation (Le Loc’h
and Galli, 1997), sequential modelling of rela-
tive indicator variables (Dimitrakopoulos and
Dagbert, 1993) or the successive co-indicator
simulation approach (Vargas-Guzman and
Dimitrakopoulos, 2003) may be appropriate for
simulating mesotextures.

The standardized entropy of the ccdf of
simulated mesotextures demonstrates the
uncertainty of a mesotexture simulated at a
location. This measure of uncertainty attempts
to reflect both the structural distance to sam-
pled data locations and the variability of the
experimental data within the local neighbour-
hood. However, it may also be ambiguous and
needs to be further understood.

The economic benefit from modelling ore
textures is, in part, related to the integrity of
the texture models at the mining scale. The
question of scale and when to upscale during
the data acquisition, compositing, and texture
modelling process is critical in honouring the
local and global texture statistics, and the tex-
ture spatial structures. It is easy to misrepre-
sent ore textures in large blocks or stopes,
either by upscaling texture data early in the
modelling process, or by upscaling in an inap-
propriate manner.

Geostatistical techniques have been
widely used for evaluating ore reserves, quanti-
fying the effects of different mining strategies,
and evaluating the variability of the expected
mill feed head-grade. This paper discussed the
influence of texture models on in situ ore/waste
delineation. However, the texture models can
also form the basis for predicting, simulating,

and controlling the time-dependent variability
of the ore behaviour in the mill feed.
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